Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22086, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543896

RESUMO

The maintenance of human health is dependent on a symbiotic relationship between humans and associated bacteria. The diversity and abundance of each habitat's signature microbes vary widely among body areas and among them the oral microbiome plays a key role. Significant changes in the oral cavity, predominantly at salivary and periodontal level, have been associated with changes in estrogen levels. However, whether the oral microbiome is affected by hormonal level alterations is understudied. Hence the main objective pursued by AMICA project was to characterize the oral microbiome (saliva) in healthy women through: profiling studies using "omics" technologies (NMR-based metabolomics, targeted lipidomics by LC-MS, metagenomics by NGS); SinglePlex ELISA assays; glycosidase activity analyses and bioinformatic analysis. For this purpose, thirty-nine medically healthy women aged 26-77 years (19 with menstrual cycle and 20 in menopause) were recruited. Participants completed questionnaires assessing detailed medical and medication history and demographic characteristics. Plasmatic and salivary levels of sexual hormones were assessed (FSH, estradiol, LH and progesteron) at day 3 and 14 for women with menstrual cycle and only once for women in menopause. Salivary microbiome composition was assessed through meta-taxonomic 16S sequencing and overall, the salivary microbiome of most women remained relatively stable throughout the menstrual cycle and in menopause. Targeted lipidomics and untargeted metabolomics profiling were assessed through the use of LC-MS and NMR spectroscopy technologies, respectively and significant changes in terms of metabolites were identified in saliva of post-menopausal women in comparison to cycle. Moreover, glycosyl hydrolase activities were screened and showed that the ß-D-hexosaminidase activity was the most present among those analyzed. Although this study has not identified significant alterations in the composition of the oral microbiome, multiomics analysis have revealed a strong correlation between 2-AG and α-mannosidase. In conclusion, the use of a multidisciplinary approach to investigate the oral microbiome of healthy women provided some indication about microbiome-derived predictive biomarkers that could be used in the future for developing new strategies to help to re-establish the correct hormonal balance in post-menopausal women.


Assuntos
Hormônio Luteinizante , Microbiota , Feminino , Humanos , Hormônio Foliculoestimulante , Menopausa , Ciclo Menstrual
2.
Braz J Med Biol Res ; 54(12): e11071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34730678

RESUMO

Kahweol is a compound derived from coffee with reported antinociceptive effects. Based on the few reports that exist in the literature regarding the mechanisms involved in kahweol-induced peripheral antinociceptive action, this study proposed to investigate the contribution of the endocannabinoid system to the peripheral antinociception induced in rats by kahweol. Hyperalgesia was induced by intraplantar injection of prostaglandin E2(PGE2) and was measured with the paw pressure test. Kahweol and the drugs to test the cannabinoid system were administered locally into the right hind paw. The endocannabinoids were purified by open-bed chromatography on silica and measured by LC-MS. Kahweol (80 µg/paw) induced peripheral antinociception against PGE2-induced hyperalgesia. This effect was reversed by the intraplantar injection of the CB1 cannabinoid receptor antagonist AM251 (20, 40, and 80 µg/paw), but not by the CB2 cannabinoid receptor antagonist AM630 (100 µg/paw). Treatment with the endocannabinoid reuptake inhibitor VDM11 (2.5 µg/paw) intensified the peripheral antinociceptive effect induced by low-dose kahweol (40 µg/paw). The monoacylglycerol lipase (MAGL) inhibitor, JZL184 (4 µg/paw), and the dual MAGL/fatty acid amide hydrolase (FAAH) inhibitor, MAFP (0.5 µg/paw), potentiated the peripheral antinociceptive effect of low-dose kahweol. Furthermore, kahweol increased the levels of the endocannabinoid anandamide, but not of the other endocannabinoid 2-arachidonoylglycerol nor of anandamide-related N-acylethanolamines, in the plantar surface of the rat paw. Our results suggested that kahweol induced peripheral antinociception via anandamide release and activation of CB1 cannabinoid receptors and this compound could be used to develop new drugs for pain relief.


Assuntos
Diterpenos , Endocanabinoides , Analgésicos/farmacologia , Animais , Café , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Ratos , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
3.
Braz. j. med. biol. res ; 54(12): e11071, 2021. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1345564

RESUMO

Kahweol is a compound derived from coffee with reported antinociceptive effects. Based on the few reports that exist in the literature regarding the mechanisms involved in kahweol-induced peripheral antinociceptive action, this study proposed to investigate the contribution of the endocannabinoid system to the peripheral antinociception induced in rats by kahweol. Hyperalgesia was induced by intraplantar injection of prostaglandin E2(PGE2) and was measured with the paw pressure test. Kahweol and the drugs to test the cannabinoid system were administered locally into the right hind paw. The endocannabinoids were purified by open-bed chromatography on silica and measured by LC-MS. Kahweol (80 µg/paw) induced peripheral antinociception against PGE2-induced hyperalgesia. This effect was reversed by the intraplantar injection of the CB1 cannabinoid receptor antagonist AM251 (20, 40, and 80 μg/paw), but not by the CB2 cannabinoid receptor antagonist AM630 (100 μg/paw). Treatment with the endocannabinoid reuptake inhibitor VDM11 (2.5 μg/paw) intensified the peripheral antinociceptive effect induced by low-dose kahweol (40 μg/paw). The monoacylglycerol lipase (MAGL) inhibitor, JZL184 (4 μg/paw), and the dual MAGL/fatty acid amide hydrolase (FAAH) inhibitor, MAFP (0.5 μg/paw), potentiated the peripheral antinociceptive effect of low-dose kahweol. Furthermore, kahweol increased the levels of the endocannabinoid anandamide, but not of the other endocannabinoid 2-arachidonoylglycerol nor of anandamide-related N-acylethanolamines, in the plantar surface of the rat paw. Our results suggested that kahweol induced peripheral antinociception via anandamide release and activation of CB1 cannabinoid receptors and this compound could be used to develop new drugs for pain relief.

4.
Br J Pharmacol ; 175(23): 4371-4385, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184259

RESUMO

BACKGROUND AND PURPOSE: The endocannabinoid (EC) system has been implicated in the pathogenesis of diabetic nephropathy (DN). We investigated the effects of peripheral blockade of the cannabinoid CB1 receptor as an add-on treatment to ACE-inhibition in type 1 diabetic mice (DM) with established albuminuria. EXPERIMENTAL APPROACH: Renal functional parameters (albumin excretion rate, creatinine clearance), tubular injury, renal structure, both EC and CB receptor levels and markers of podocyte dysfunction, fibrosis and inflammation were studied in streptozotocin-induced DM treated for 14 weeks with vehicle, the ACE-inhibitor perindopril (2 mg·kg-1 ·day-1 ), peripherally-restricted CB1 receptor antagonist AM6545 (10 mg·kg-1 ·day-1 ) or both. Treatments began at 8 weeks after diabetes onset, when early DN is established. KEY RESULTS: CB1 receptors were overexpressed in DM and neither perindopril nor AM6545 altered this effect, while both drugs abolished diabetes-induced overexpression of angiotensin AT1 receptors. Single treatment with either AM6545 or perindopril significantly reduced progression of albuminuria, down-regulation of nephrin and podocin, inflammation and expression of markers of fibrosis. However, reversal of albuminuria was only observed in mice administered both treatments. The ability of the combination therapy to completely abolish slit diaphragm protein loss, monocyte infiltration, overexpression of inflammatory markers and favour macrophage polarization towards an M2 phenotype may explain this greater efficacy. In vitro experiments confirmed that CB1 receptor activation directly inhibits retinoic acid-induced nephrin expression in podocytes and IL-4-induced M2 polarization in macrophages. CONCLUSION AND IMPLICATIONS: Peripheral CB1 receptor blockade used as add-on treatment to ACE-inhibition reverses albuminuria, nephrin loss and inflammation in DM.


Assuntos
Albuminúria/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Morfolinas/farmacologia , Perindopril/farmacologia , Pirazóis/farmacologia , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/administração & dosagem , Perindopril/administração & dosagem , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo
5.
Proc Math Phys Eng Sci ; 474(2216): 20180266, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30220868

RESUMO

The Multi-Blade is a boron-10-based gaseous detector developed for neutron reflectometry instruments at the European Spallation Source in Sweden. The main challenges for neutron reflectometry detectors are the instantaneous counting rate and spatial resolution. The Multi-Blade has been tested on the CRISP reflectometer at the ISIS Neutron and Muon Source in the UK. A campaign of scientific measurements has been performed to study the Multi-Blade response in real instrumental conditions. The results of these tests are discussed in this paper.

6.
Brain Behav Immun ; 67: 230-245, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28890155

RESUMO

The microbiota-gut-brain axis (MGBA) regulates the reciprocal interaction between chronic inflammatory bowel and psychiatric disorders. This interaction involves multiple pathways that are highly debated. We examined the behavioural, biochemical and electrophysiological alterations, as well as gut microbiota composition in a model of antibiotic-induced experimental dysbiosis. Inflammation of the small intestine was also assessed. Mice were exposed to a mixture of antimicrobials for 2weeks. Afterwards, they received Lactobacillus casei DG (LCDG) or a vehicle for up to 7days via oral gavage. Perturbation of microbiota was accompanied by a general inflammatory state and alteration of some endocannabinoidome members in the gut. Behavioural changes, including increased immobility in the tail suspension test and reduced social recognition were observed, and were associated with altered BDNF/TrkB signalling, TRPV1 phosphorylation and neuronal firing in the hippocampus. Moreover, morphological rearrangements of non-neuronal cells in brain areas controlling emotional behaviour were detected. Subsequent probiotic administration, compared with vehicle, counteracted most of these gut inflammatory, behavioural, biochemical and functional alterations. Interestingly, levels of Lachnospiraceae were found to significantly correlate with the behavioural changes observed in dysbiotic mice. Our findings clarify some of the biomolecular and functional modifications leading to the development of affective disorders associated with gut microbiota alterations.


Assuntos
Antibacterianos/administração & dosagem , Depressão/microbiologia , Endocanabinoides/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/microbiologia , Neuroglia/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Disbiose/complicações , Disbiose/metabolismo , Disbiose/microbiologia , Hipocampo/efeitos dos fármacos , Inflamação/complicações , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Probióticos/administração & dosagem
7.
Neurogastroenterol Motil ; 29(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28695708

RESUMO

BACKGROUND: Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. METHODS: Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. KEY RESULTS: CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 µM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 µM-10 µM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. CONCLUSIONS AND INFERENCES: The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine.


Assuntos
Amidoidrolases/metabolismo , Motilidade Gastrointestinal/fisiologia , Plexo Mientérico/metabolismo , Canais de Cátion TRPV/metabolismo , Dor Visceral/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Plexo Mientérico/efeitos dos fármacos , Serotonina/análogos & derivados , Serotonina/farmacologia
8.
Food Nutr Res ; 61(1): 1297553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659728

RESUMO

Hedonic and homeostatic hunger represent two different forms of eating: just for pleasure or following energy deprivation, respectively. Consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and some specific endocannabinoids in normal-weight subjects and patients with morbid obesity. To date, the effects of palatable food on these mediators in Prader-Willi syndrome (PWS) are still unknown. To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, cholecystokinin (CCK), peptide YY (PYY), anandamide (AEA), 2-arachidonoyl-glycerol (2-AG), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) in eight satiated adult PWS patients after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same macronutrient composition. Evaluation of hunger and satiety was also performed by visual analogic scale. The anticipatory phase and the consumption of food for pleasure were associated with decreased circulating levels of PYY. An increase in PEA levels was also observed. By contrast, circulating levels of ghrelin, CCK, AEA, 2-AG and OEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were similar in the hedonic and non-palatable sessions. In conclusion, when motivation to eat is promoted by highly palatable foods, a depressed post-prandial PYY secretion is observed in PWS. Although preliminary, these findings seem to hypothesize a possible role of PYY agonists in the management of PWS patients. Abbreviations: AEA, Anandamide; 2-AG, 2-arachidonoyl-glycerol; CB1, cannabinoid receptor type 1; OEA, oleoylethanolamide; PEA, palmitoylethanolamide; PWS: Prader-Willi syndrome; VAS, visual analog scales.

9.
Sci Rep ; 7(1): 375, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28336953

RESUMO

The endogenous fatty acid amide palmitoylethanolamide (PEA) has been shown to exert anti-inflammatory actions mainly through inhibition of the release of pro-inflammatory molecules from mast cells, monocytes and macrophages. Indirect activation of the endocannabinoid (eCB) system is among the several mechanisms of action that have been proposed to underlie the different effects of PEA in vivo. In this study, we used cultured rat microglia and human macrophages to evaluate whether PEA affects eCB signaling. PEA was found to increase CB2 mRNA and protein expression through peroxisome proliferator-activated receptor-α (PPAR-α) activation. This novel gene regulation mechanism was demonstrated through: (i) pharmacological PPAR-α manipulation, (ii) PPAR-α mRNA silencing, (iii) chromatin immunoprecipitation. Moreover, exposure to PEA induced morphological changes associated with a reactive microglial phenotype, including increased phagocytosis and migratory activity. Our findings suggest indirect regulation of microglial CB2R expression as a new possible mechanism underlying the effects of PEA. PEA can be explored as a useful tool for preventing/treating the symptoms associated with neuroinflammation in CNS disorders.


Assuntos
Movimento Celular/efeitos dos fármacos , Etanolaminas/farmacologia , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Fagocitose/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Amidas , Animais , Células HEK293 , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , PPAR alfa/metabolismo , RNA Mensageiro/metabolismo , Ratos
10.
Addict Biol ; 22(6): 1778-1789, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27578457

RESUMO

Regular use of marijuana during adolescence enhances the risk of long-lasting neurobiological changes in adulthood. The present study was aimed at assessing the effect of long-term administration of the synthetic cannabinoid WIN55212.2 during adolescence in young adult mice. Adolescent mice aged 5 weeks were subjected daily to the pharmacological action of WIN55212.2 for 3 weeks and were then left undisturbed in their home cage for a 5-week period and finally evaluated by behavioral testing. Mice that received the drug during adolescence showed memory impairment in the Morris water maze, as well as a dose-dependent memory impairment in fear conditioning. In addition, the administration of 3 mg/kg WIN55212.2 in adolescence increased adult hippocampal AEA levels and promoted DNA hypermethylation at the intragenic region of the intracellular signaling modulator Rgs7, which was accompanied by a lower rate of mRNA transcription of this gene, suggesting a potential causal relation. Although the concrete mechanisms underlying the behavioral observations remain to be elucidated, we demonstrate that long-term administration of 3 mg/kg of WIN during adolescence leads to increased endocannabinoid levels and altered Rgs7 expression in adulthood and establish a potential link to epigenetic changes.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Morfolinas/farmacologia , Naftalenos/farmacologia , Animais , Canabinoides/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Andrology ; 5(1): 87-94, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863106

RESUMO

Evidence has been produced that macrophages can actively generate endocannabinoids (eCBs) in response to inflammatory stimuli. As eCBs are involved in the control of several physiological processes, including reproduction, here, we explored whether seminal levels of the eCBs, N-arachidonoylethanolamine (AEA), and 2-arachidonoylglycerol (2-AG), were higher in the presence of leukocytospermia, and were correlated with semen concentration of macrophages. The content of AEA and 2-AG was measured by high-performance liquid chromatography/mass spectrometry in seminal plasma of ejaculates from 18 leukocytospermic patients (>1 × 106 leukocytes/mL) and 21 normozoospermic controls. In the same ejaculates, round cells were phenotyped by flow-cytometry as leukocytes (CD45+), macrophages (CD14+), and activated macrophages (CD14+, HLA-DR+). The levels of 2-AG, but not of AEA, were significantly higher in ejaculates from leukocytospermic patients than in controls and exhibited a significant correlation with semen concentration of macrophages and activated macrophages. Significant associations of 2-AG with macrophages and activated macrophages persisted after adjustment for semen volume and sperm concentration. In conclusion, here we provide evidence that seminal plasma levels of 2-AG are higher in the presence of leukocytospermia, as a marker of macrophages activation. Further studies are warranted to elucidate possible clinical implications.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Citometria de Fluxo , Humanos , Leucócitos/citologia , Macrófagos/citologia , Masculino , Alcamidas Poli-Insaturadas , Sêmen/citologia , Análise do Sêmen , Espermatozoides/citologia
12.
Neuropharmacology ; 107: 49-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26965218

RESUMO

The involvement of transient receptor vanilloid type-1 (TRPV1) channels in pain modulation by the brain remains understudied. The rostroventromedial medulla (RVM) plays a key role in conveying to the spinal cord pain modulatory influences triggered in higher brain centres, with co-existence of inhibitory (antinociceptive) and facilitatory (pronociceptive) effects. In spite of some reports of TRPV1 expression in the RVM, it remains unknown if endovanilloid signalling plays a direct role in local pain modulation. Here we used a model of diabetic neuropathy, the streptozotocin (STZ)-diabetic rat, to study the role of endovanilloid signalling in RVM-mediated pain modulation during chronic pain. Four weeks after diabetes induction, the levels of TRPV1 mRNA and fatty acid amide hydrolase (FAAH), a crucial enzyme for endovanilloid catabolism, in the RVM of STZ-diabetic rats were higher than control. The RVM of STZ-diabetic rats presented decreased levels of several TRPV1 endogenous ligands, namely anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Administration of capsaicin (a TRPV1 agonist) into the RVM decreased nociceptive behavioural responses in the inflammatory phase of the formalin test (phase 2). These findings suggest that diabetic neuropathy induces plastic changes of RVM endovanilloid signalling, indicating that TRPV1 may be a putative target for pain modulation in this chronic pain condition.


Assuntos
Amidoidrolases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Bulbo/metabolismo , Dor Nociceptiva/metabolismo , Canais de Cátion TRPV/metabolismo , Amidas , Analgésicos não Narcóticos/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Capsaicina/farmacologia , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Formaldeído , Masculino , Dor Nociceptiva/tratamento farmacológico , Ácidos Oleicos/metabolismo , Ácidos Palmíticos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Canais de Cátion TRPV/agonistas
13.
Proc Math Phys Eng Sci ; 472(2185): 20150711, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26997902

RESUMO

Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection.

14.
Eur J Nutr ; 55(4): 1799-805, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26759262

RESUMO

PURPOSE: Hedonic eating occurs independently from homeostatic needs prompting the ingestion of pleasurable foods that are typically rich in fat, sugar and/or salt content. In normal weight healthy subjects, we found that before hedonic eating, plasma levels of 2-arachidonoylglycerol (2-AG) were higher than before nonhedonic eating, and although they progressively decreased after food ingestion in both eating conditions, they were significantly higher in hedonic eating. Plasma levels of anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), instead, progressively decreased in both eating conditions without significant differences. In this study, we investigated the responses of AEA, 2-AG, OEA and PEA to hedonic eating in obese individuals. METHODS: Peripheral levels of AEA, 2-AG, OEA and PEA were measured in 14 obese patients after eating favourite (hedonic eating) and non-favourite (nonhedonic eating) foods in conditions of no homeostatic needs. RESULTS: Plasma levels of 2-AG increased after eating the favourite food, whereas they decreased after eating the non-favourite food, with the production of the endocannabinoid being significantly enhanced in hedonic eating. Plasma levels of AEA decreased progressively in nonhedonic eating, whereas they showed a decrease after the exposure to the favourite food followed by a return to baseline values after eating it. No significant differences emerged in plasma OEA and PEA responses to favourite and non-favourite food. CONCLUSION: Present findings compared with those obtained in our previously studied normal weight healthy subjects suggest deranged responses of endocannabinoids to food-related reward in obesity.


Assuntos
Endocanabinoides/sangue , Comportamento Alimentar/fisiologia , Obesidade/sangue , Adulto , Amidas , Ácidos Araquidônicos/sangue , Índice de Massa Corporal , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/análise , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/análise , Proteínas na Dieta/administração & dosagem , Proteínas na Dieta/análise , Ingestão de Energia , Etanolaminas/sangue , Feminino , Glicerídeos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Valor Nutritivo , Ácidos Oleicos/sangue , Ácidos Palmíticos/sangue , Alcamidas Poli-Insaturadas/sangue , Saciação/fisiologia , Adulto Jovem
15.
Behav Brain Res ; 303: 34-43, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26815100

RESUMO

Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice.


Assuntos
Calreticulina/metabolismo , Endocanabinoides/metabolismo , Desempenho Psicomotor/fisiologia , Comportamento Social , Estresse Psicológico/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Cerebelo/metabolismo , Perfilação da Expressão Gênica , Glicerídeos/metabolismo , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Teste de Desempenho do Rota-Rod , Estresse Psicológico/genética
16.
Biochim Biophys Acta ; 1851(11): 1473-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335727

RESUMO

Recently, endocannabinoids have emerged as signalling mediators in reproduction. It is widely accepted that anandamide (AEA) levels must be tightly regulated, and that a disturbance in AEA levels may impact decidual stability and regression. We have previously characterized the endocannabinoid machinery in rat decidual tissue and reported the pro-apoptotic action of AEA on rat decidual cells. Cyclooxygenase-2 (COX-2) is an inducible enzyme that plays a crucial role in early pregnancy, and is also a key modulator in the crosstalk between endocannabinoids and prostaglandins. On the other hand, AEA-oxidative metabolism by COX-2 is not merely a mean to inactivate its action, but it yields the formation of a new class of mediators, named prostaglandin-ethanolamides, or prostamides. In this study we found that AEA-induced apoptosis in decidual cells involves COX-2 metabolic pathway. AEA induced COX-2 expression through p38 MAPK, resulting in the formation of prostamide E2 (PME2). Our findings also suggest that AEA-induced effect is associated with NF-kB activation. Finally, we describe the involvement of PME2 in the induction of the intrinsic apoptotic pathway in rat decidual cells. Altogether, our findings highlight the role of COX-2 as a gatekeeper in the uterine environment and clarify the impact of the deregulation of AEA levels on the decidual remodelling process.


Assuntos
Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Decídua/metabolismo , Dinoprostona/análogos & derivados , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Transdução de Sinais/genética , Animais , Apoptose/genética , Ciclo-Oxigenase 2/genética , Decídua/citologia , Decídua/embriologia , Dinoprostona/metabolismo , Feminino , Regulação da Expressão Gênica , NF-kappa B/genética , NF-kappa B/metabolismo , Oxirredução , Gravidez , Cultura Primária de Células , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Mol Brain ; 8: 47, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26260027

RESUMO

BACKGROUND: Enhanced supraspinal glutamate levels following nerve injury are associated with pathophysiological mechanisms responsible for neuropathic pain. Chronic pain can interfere with specific brain areas involved in glutamate-dependent neuropsychological processes, such as cognition, memory, and decision-making. The medial prefrontal cortex (mPFC) is thought to play a critical role in pain-related depression and anxiety, which are frequent co-morbidities of chronic pain. Using an animal model of spared nerve injury (SNI) of the sciatic nerve, we assess bio-molecular modifications in glutamatergic synapses in the mPFC that underlie neuropathic pain-induced plastic changes at 30 days post-surgery. Moreover, we examine the effects of palmitoylethanolamide (PEA) administration on pain-related behaviours, as well as the cortical biochemical and morphological changes that occur in SNI animals. RESULTS: At 1 month, SNI was associated with mechanical and thermal hypersensitivity, as well as depression-like behaviour, cognitive impairments, and obsessive-compulsive activities. Moreover, we observed an overall glutamate synapse modification in the mPFC, characterized by changes in synaptic density proteins and amino acid levels. Finally, with regard to the resolution of pain and depressive-like syndrome in SNI mice, PEA restored the glutamatergic synapse proteins and changes in amino acid release. CONCLUSIONS: Given the potential role of the mPFC in pain mechanisms, our findings may provide novel insights into neuropathic pain forebrain processes and indicate PEA as a new pharmacological tool to treat neuropathic pain and the related negative affective states. Graphical Abstract Palmitoylethanolamide: a new pharmacological tool to treat neuropathic pain and the related negative affective states.


Assuntos
Comportamento Animal/efeitos dos fármacos , Etanolaminas/uso terapêutico , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Ácidos Palmíticos/uso terapêutico , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo , Amidas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Etanolaminas/farmacologia , Imobilização , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microinjeções , Neuralgia/metabolismo , Neuralgia/patologia , Neuralgia/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácidos Palmíticos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Cauda
18.
Nutr Diabetes ; 5: e151, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25915740

RESUMO

OBJECTIVE: Endocannabinoids and neuropeptide Y (NPY) promote energy storage via central and peripheral mechanisms. In the hypothalamus, the two systems were suggested to interact. To investigate such interplay also in non-hypothalamic tissues, we evaluated endocannabinoid levels in obese OE-NPY(DßH) mice, which overexpress NPY in the noradrenergic neurons in the sympathetic nervous system and the brain. METHODS: The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were measured in key regulatory tissues, that is, hypothalamus, pancreas, epididymal white adipose tissue (WAT), liver and soleus muscle, over the development of metabolic dysfunctions in OE-NPY(DßH) mice. The effects of a 5-week treatment with the CB1 receptor inverse agonist AM251 on adiposity and glucose metabolism were studied. RESULTS: 2-AG levels were increased in the hypothalamus and epididymal WAT of pre-obese and obese OE-NPY(DßH) mice. Anandamide levels in adipose tissue and pancreas were increased at 4 months concomitantly with higher fat mass and impaired glucose tolerance. CB1 receptor blockage reduced body weight gain and glucose intolerance in OE-NPY(DßH) to the level of vehicle-treated wild-type mice. CONCLUSIONS: Altered endocannabinoid tone may underlie some of the metabolic dysfunctions in OE-NPY(DßH) mice, which can be attenuated with CB1 inverse agonism suggesting interactions between endocannabinoids and NPY also in the periphery. CB1 receptors may offer a target for the pharmacological treatment of the metabolic syndrome with altered NPY levels.

19.
Br J Pharmacol ; 172(12): 3099-111, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25684407

RESUMO

BACKGROUND AND PURPOSE: Endocannabinoids are a family of lipid mediators involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood. Here, we examined the expression, localization and function of the enzyme diacylglycerol lipase-α (DAGLα), which is involved in biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). EXPERIMENTAL APPROACH: Cannabinoid CB1 receptor-deficient, wild-type control and C3H/HeJ mice, a genetically constipated strain, were used. The distribution of DAGLα in the enteric nervous system was examined by immunohistochemistry. Effects of the DAGL inhibitors, orlistat and OMDM-188 on pharmacologically induced GI hypomotility were assessed by measuring intestinal contractility in vitro and whole gut transit or faecal output in vivo. Endocannabinoid levels were measured by mass spectrometry. KEY RESULTS: DAGLα was expressed throughout the GI tract. In the intestine, unlike DAGLß, DAGLα immunoreactivity was prominently expressed in the enteric nervous system. In the myenteric plexus, it was colocalized with the vesicular acetylcholine transporter in cholinergic nerves. In normal mice, inhibiting DAGL reversed both pharmacologically reduced intestinal contractility and pharmacologically prolonged whole gut transit. Moreover, inhibiting DAGL normalized faecal output in constipated C3H/HeJ mice. In colons incubated with scopolamine, 2-AG was elevated while inhibiting DAGL normalized 2-AG levels. CONCLUSIONS AND IMPLICATIONS: DAGLα was expressed in the enteric nervous system of mice and its inhibition reversed slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor-mediated mechanisms. Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.


Assuntos
Ácidos Araquidônicos/biossíntese , Constipação Intestinal/tratamento farmacológico , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Lipase Lipoproteica/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Animais , Constipação Intestinal/genética , Constipação Intestinal/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Lactonas/farmacologia , Lipase Lipoproteica/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Orlistate , Escopolamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...